reentrantlock
本文转载自:https://tech.meituan.com/2019/12/05/aqs-theory-and-apply.html
作者:美团技术团队
Java 中的大部分同步类(Semaphore、ReentrantLock 等)都是基于 AbstractQueuedSynchronizer(简称为 AQS)实现的。AQS 是一种提供了原子式管理同步状态、阻塞和唤醒线程功能以及队列模型的简单框架。
本文会从应用层逐渐深入到原理层,并通过 ReentrantLock 的基本特性和 ReentrantLock 与 AQS 的关联,来深入解读 AQS 相关独占锁的知识点,同时采取问答的模式来帮助大家理解 AQS。由于篇幅原因,本篇文章主要阐述 AQS 中独占锁的逻辑和 Sync Queue,不讲述包含共享锁和 Condition Queue 的部分(本篇文章核心为 AQS 原理剖析,只是简单介绍了 ReentrantLock,感兴趣同学可以阅读一下 ReentrantLock 的源码)。
1 ReentrantLock
1.1 ReentrantLock 特性概览
ReentrantLock 意思为可重入锁,指的是一个线程能够对一个临界资源重复加锁。为了帮助大家更好地理解 ReentrantLock 的特性,我们先将 ReentrantLock 跟常用的 Synchronized 进行比较,其特性如下(蓝色部分为本篇文章主要剖析的点):
下面通过伪代码,进行更加直观的比较:
// **************************Synchronized的使用方式**************************
// 1.用于代码块
synchronized (this) {}
// 2.用于对象
synchronized (object) {}
// 3.用于方法
public synchronized void test () {}
// 4.可重入
for (int i = 0; i < 100; i++) {
synchronized (this) {}
}
// **************************ReentrantLock的使用方式**************************
public void test () throw Exception {
// 1.初始化选择公平锁、非公平锁
ReentrantLock lock = new ReentrantLock(true);
// 2.可用于代码块
lock.lock();
try {
try {
// 3.支持多种加锁方式,比较灵活; 具有可重入特性
if(lock.tryLock(100, TimeUnit.MILLISECONDS)){ }
} finally {
// 4.手动释放锁
lock.unlock()
}
} finally {
lock.unlock();
}
}
1.2 ReentrantLock 与 AQS 的关联
通过上文我们已经了解,ReentrantLock 支持公平锁和非公平锁(关于公平锁和非公平锁的原理分析,可参考《不可不说的 Java“锁”事》),并且 ReentrantLock 的底层就是由 AQS 来实现的。那么 ReentrantLock 是如何通过公平锁和非公平锁与 AQS 关联起来呢? 我们着重从这两者的加锁过程来理解一下它们与 AQS 之间的关系(加锁过程中与 AQS 的关联比较明显,解锁流程后续会介绍)。
非公平锁源码中的加锁流程如下:
// java.util.concurrent.locks.ReentrantLock#NonfairSync
// 非公平锁
static final class NonfairSync extends Sync {
...
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
...
}
这块代码的含义为:
- 若通过 CAS 设置变量 State(同步状态)成功,也就是获取锁成功,则将当前线程设置为独占线程。
- 若通过 CAS 设置变量 State(同步状态)失败,也就是获取锁失败,则进入 Acquire 方法进行后续处理。
第一步很好理解,但第二步获取锁失败后,后续的处理策略是怎么样的呢?这块可能会有以下思考:
- 某个线程获取锁失败的后续流程是什么呢?有以下两种可能:
(1) 将当前线程获锁结果设置为失败,获取锁流程结束。这种设计会极大降低系统的并发度,并不满足我们实际的需求。所以就需要下面这种流程,也就是 AQS 框架的处理流程。
(2) 存在某种排队等候机制,线程继续等待,仍然保留获取锁的可能,获取锁流程仍在继续。
- 对于问题 1 的第二种情况,既然说到了排队等候机制,那么就一定会有某种队列形成,这样的队列是什么数据结构呢?
- 处于排队等候机制中的线程,什么时候可以有机会获取锁呢?
- 如果处于排队等候机制中的线程一直无法获取锁,还是需要一直等待吗,还是有别的策略来解决这一问题?
带着非公平锁的这些问题,再看下公平锁源码中获锁的方式:
// java.util.concurrent.locks.ReentrantLock#FairSync
static final class FairSync extends Sync {
...
final void lock() {
acquire(1);
}
...
}
看到这块代码,我们可能会存在这种疑问:Lock 函数通过 Acquire 方法进行加锁,但是具体是如何加锁的呢?
结合公平锁和非公平锁的加锁流程,虽然流程上有一定的不同,但是都调用了 Acquire 方法,而 Acquire 方法是 FairSync 和 UnfairSync 的父类 AQS 中的核心方法。
对于上边提到的问题,其实在 ReentrantLock 类源码中都无法解答,而这些问题的答案,都是位于 Acquire 方法所在的类 AbstractQueuedSynchronizer 中,也就是本文的核心——AQS。下面我们会对 AQS 以及 ReentrantLock 和 AQS 的关联做详细介绍(相关问题答案会在 2.3.5 小节中解答)。
2 AQS
首先,我们通过下面的架构图来整体了解一下 AQS 框架:
- 上图中有颜色的为 Method,无颜色的为 Attribution。
- 总的来说,AQS 框架共分为五层,自上而下由浅入深,从 AQS 对外暴露的 API 到底层基础数据。
- 当有自定义同步器接入时,只需重写第一层所需要的部分方法即可,不需要关注底层具体的实现流程。当自定义同步器进行加锁或者解锁操作时,先经过第一层的 API 进入 AQS 内部方法,然后经过第二层进行锁的获取,接着对于获取锁失败的流程,进入第三层和第四层的等待队列处理,而这些处理方式均依赖于第五层的基础数据提供层。
下面我们会从整体到细节,从流程到方法逐一剖析 AQS 框架,主要分析过程如下:
2.1 原理概览
AQS 核心思想是,如果被请求的共享资源空闲,那么就将当前请求资源的线程设置为有效的工作线程,将共享资源设置为锁定状态;如果共享资源被占用,就需要一定的阻塞等待唤醒机制来保证锁分配。这个机制主要用的是 CLH 队列的变体实现的,将暂时获取不到锁的线程加入到队列中。
CLH:Craig、Landin and Hagersten 队列,是单向链表,AQS 中的队列是 CLH 变体的虚拟双向队列(FIFO),AQS 是通过将每条请求共享资源的线程封装成一个节点来实现锁的分配。
主要原理图如下:
AQS 使用一个 Volatile 的 int 类型的成员变量来表示同步状态,通过内置的 FIFO 队列来完成资源获取的排队工作,通过 CAS 完成对 State 值的修改。
2.1.1 AQS 数据结构
先来看下 AQS 中最基本的数据结构——Node,Node 即为上面 CLH 变体队列中的节点。
解释一下几个方法和属性值的含义:
方法和属性值 | 含义 |
---|---|
waitStatus | 当前节点在队列中的状态 |
thread | 表示处于该节点的线程 |
prev | 前驱指针 |
predecessor | 返回前驱节点,没有的话抛出 npe |
nextWaiter | 指向下一个处于 CONDITION 状态的节点(由于本篇文章不讲述 Condition Queue 队列,这个指针不多介绍) |
next | 后继指针 |
线程两种锁的模式:
模式 | 含义 |
---|---|
0 | 当一个 Node 被初始化的时候的默认值 |
CANCELLED | 为 1,表示线程获取锁的请求已经取消了 |
CONDITION | 为-2,表示节点在等待队列中,节点线程等待唤醒 |
PROPAGATE | 为-3,当前线程处在 SHARED 情况下,该字段才会使用 |
SIGNAL | 为-1,表示线程已经准备好了,就等资源释放了 |
2.1.2 同步状态 State
在了解数据结构后,接下来了解一下 AQS 的同步状态——State。AQS 中维护了一个名为 state 的字段,意为同步状态,是由 Volatile 修饰的,用于展示当前临界资源的获锁情况。
// java.util.concurrent.locks.AbstractQueuedSynchronizer
private volatile int state;
下面提供了几个访问这个字段的方法:
方法名 | 描述 |
---|---|
protected final int getState() | 获取 State 的值 |
protected final void setState(int newState) | 设置 State 的值 |
protected final boolean compareAndSetState(int expect, int update) | 使用 CAS 方式更新 State |
这几个方法都是 Final 修饰的,说明子类中无法重写它们。我们可以通过修改 State 字段表示的同步状态来实现多线程的独占模式和共享模式(加锁过程)。
对于我们自定义的同步工具,需要自定义获取同步状态和释放状态的方式,也就是 AQS 架构图中的第一层:API 层。
2.2 AQS 重要方法与 ReentrantLock 的关联
从架构图中可以得知,AQS 提供了大量用于自定义同步器实现的 Protected 方法。自定义同步器实现的相关方法也只是为了通过修改 State 字段来实现多线程的独占模式或者共享模式。自定义同步器需要实现以下方法(ReentrantLock 需要实现的方法如下,并不是全部):
方法名 | 描述 |
---|---|
ReentrantLock | 使用 AQS 保存锁重复持有的次数。当一个线程获取锁时,ReentrantLock 记录当前获得锁的线程标识,用于检测是否重复获取,以及错误线程试图解锁操作时异常情况的处理。 |
Semaphore | 使用 AQS 同步状态来保存信号量的当前计数。tryRelease 会增加计数,acquireShared 会减少计数。 |
CountDownLatch | 使用 AQS 同步状态来表示计数。计数为 0 时,所有的 Acquire 操作(CountDownLatch 的 await 方法)才可以通过。 |
ReentrantReadWriteLock | 使用 AQS 同步状态中的 16 位保存写锁持有的次数,剩下的 16 位用于保存读锁的持有次数。 |
ThreadPoolExecutor | Worker 利用 AQS 同步状态实现对独占线程变量的设置(tryAcquire 和 tryRelease)。 |
4.3 自定义同步工具
了解 AQS 基本原理以后,按照上面所说的 AQS 知识点,自己实现一个同步工具。
public class LeeLock {
private static class Sync extends AbstractQueuedSynchronizer {
@Override
protected boolean tryAcquire (int arg) {
return compareAndSetState(0, 1);
}
@Override
protected boolean tryRelease (int arg) {
setState(0);
return true;
}
@Override
protected boolean isHeldExclusively () {
return getState() == 1;
}
}
private Sync sync = new Sync();
public void lock () {
sync.acquire(1);
}
public void unlock () {
sync.release(1);
}
}
通过我们自己定义的 Lock 完成一定的同步功能。
public class LeeMain {
static int count = 0;
static LeeLock leeLock = new LeeLock();
public static void main (String[] args) throws InterruptedException {
Runnable runnable = new Runnable() {
@Override
public void run () {
try {
leeLock.lock();
for (int i = 0; i < 10000; i++) {
count++;
}
} catch (Exception e) {
e.printStackTrace();
} finally {
leeLock.unlock();
}
}
};
Thread thread1 = new Thread(runnable);
Thread thread2 = new Thread(runnable);
thread1.start();
thread2.start();
thread1.join();
thread2.join();
System.out.println(count);
}
}
上述代码每次运行结果都会是 20000。通过简单的几行代码就能实现同步功能,这就是 AQS 的强大之处。
5 总结
我们日常开发中使用并发的场景太多,但是对并发内部的基本框架原理了解的人却不多。由于篇幅原因,本文仅介绍了可重入锁 ReentrantLock 的原理和 AQS 原理,希望能够成为大家了解 AQS 和 ReentrantLock 等同步器的“敲门砖”。
参考资料
- Lea D. The java. util. concurrent synchronizer framework[J]. Science of Computer Programming, 2005, 58(3): 293-309.
- 《Java 并发编程实战》
- 不可不说的 Java“锁”事
评论:
技术文章推送
手机、电脑实用软件分享