menu

BinarySearch

二分查找

二分的本质并非“单调性”,而是“边界”,只要找到某种性质,使得整个区间一分为二,那么就可以用二分把边界点二分出来。

算法模板

模板 1

boolean check(int x) {
}

int search(int left, int right) {
    while (left < right) {
        int mid = (left + right) >> 1;
        if (check(mid)) {
            right = mid;
        } else {
            left = mid + 1;
        }
    }
    return left;
}

模板 2

boolean check(int x) {
}

int search(int left, int right) {
    while (left < right) {
        int mid = (left + right + 1) >> 1;
        if (check(mid)) {
            left = mid;
        } else {
            right = mid - 1;
        }
    }
    return left;
}

做二分题目时,可以按照以下套路:

  1. 写出循环条件 $left < right$;
  2. 循环体内,不妨先写 $mid = \lfloor \frac{left + right}{2} \rfloor$;
  3. 根据具体题目,实现 $check()$ 函数(有时很简单的逻辑,可以不定义 $check$),想一下究竟要用 $right = mid$(模板 $1$) 还是 $left = mid$(模板 $2$);     - 如果 $right = mid$,那么写出 else 语句 $left = mid + 1$,并且不需要更改 mid 的计算,即保持 $mid = \lfloor \frac{left + right}{2} \rfloor$;     - 如果 $left = mid$,那么写出 else 语句 $right = mid - 1$,并且在 $mid$ 计算时补充 +1,即 $mid = \lfloor \frac{left + right + 1}{2} \rfloor$;
  4. 循环结束时,$left$ 与 $right$ 相等。

注意,这两个模板的优点是始终保持答案位于二分区间内,二分结束条件对应的值恰好在答案所处的位置。 对于可能无解的情况,只要判断二分结束后的 $left$ 或者 $right$ 是否满足题意即可。

例题


评论:


技术文章推送

手机、电脑实用软件分享

微信搜索公众号: AndrewYG的算法世界
wechat 微信公众号:AndrewYG的算法世界